It costs about 3 cents per hour to operate.
The GFCI protects the SAFE-HEET and engine from any electrical fault situations by shutting off power to protect people and the engine. Abuse of the power cord can cause dangerous electrical failures.
This is determined by experimentation on knob settings and several variables such as ambient temperature, wind, size of engine/propeller combination and insulation of engine cowling.
McFarlane’s adhesive is thermally conductive, so it transfers heat effectively while the other brands use a peel and stick tape that tends to fall off. As a result, McFarlane’s has a longer life over the other brands. McFarlane’s adhesive is resistant to solvents/oils but if it ever does fail, the heat pad is not going to jam up anything in the engine compartment, because it is not a solid metal like other brands out there. SAFE-HEET heats the engine oil while other brands heat the cylinder, not the oil. SAFE-HEET is safe and is electrically grounded with a ground wire. The SAFE-HEET pad covers a large surface. McFarlane’s GFCI can be used with any heater, not just SAFE-HEET.
The kit includes the SAFE-HEET and temperature controller. The temperature controller makes installation easier and helps control condensation which leads to corrosion. It is like a dimmer switch that puts you in control of how much power is going to the unit.
No, McFarlane does not provide templates for installing seat rails on Piper aircraft because the rail is riveted to the floor of the airplane, making installation easy by riveting directly from under the airplane.
Yes, but there are some restrictions. The screws must be structural screw with a minimum tensile strength of 50ksi. See SAIB CE-90-03R2 for more details.
We do not recommend using blind rivets for seat rail installation.
Aircraft make, model and serial number are not sufficient to ensure the correct replacement spring as many aircraft may have been originally equipped with either one or retrofitted with a conversion kit. If the spring you are replacing is marked with a brand name (e.g. P.L. Porter or Stabilus) the correct replacement is readily identified. The coil spring/hydraulic style are also identifiable by a 1¼" diameter visible coil spring. The thread may also be measured to verify the correct identification.
The screw kit depends on if the holes in the floor of your airplane have been carefully removed and are close to new size or if they have been enlarged by unskilled rivet removal or the rails have been changed before. It will make a difference if the previous rails installed were Cessna rails with predrilled holes in the rail. (They do not normally line up well and the floor has been mis-drilled some to force them to align). If the holes are good, use the SR6-SCREW-KT kit. If the holes are enlarged some, use the SR8-SCREW-KT kit.
Installation of the McFarlane Seat Stop P/N MC0511242-1 may require the removal of extra material from the seat rail where the seat rail hole breaks through the vertical web. Material removal may be accomplished with a small file or other deburring tool. Do not remove material from the seat stop when attempting to install. Refer to Cessna/Textron service information for correct seat stop location.
Determine which extrusion is used: STE101 and STE102 - Standard hole depth drilled on the roller flange is .330” and standard diameter is .277”. STE103 and STE104 - Standard hole depth drilled on the roller flange is .280” and standard diameter is .277”.
When hydraulic oil changes temperature, the volume of the oil also changes. This volume change from a temperature reduction will create a vacuum in the oil chamber of the original Cessna uncompensated shimmy dampener. This vacuum will cause the oil to vaporize giving the oil a foamy expanded mixture that is compressible. The shimmy dampener action is then drastically degraded. An increase in temperature will increase the oil volume causing a drastic pressurization of the dampener oil chamber. This pressure will force small quantities of oil past the dampener shaft seals. The decrease in oil will then aggravate any temperature reduction with increased chamber vacuum and related oil vaporization. This process explains why continuous servicing of the original shimmy dampener is required.
The temperature compensation system works by having a small chamber of oil that is spring pressurized through a very small passage into the main dampening restrictive orifice of the shimmy dampener. The spring loaded oil chamber can adjust for oil volume changes as temperature changes. A similar system is built into your car shock absorbers. The temperature compensated hydraulic system requires very little service over extended periods of time and assures stable shimmy dampening action.
A rubber based dampener is continuously fatiguing the rubber components as it changes direction of motion. The rubber system depends on stable friction of the rubber riding in a metal tube. This is very difficult to achieve over extended usage. There are inherent differences in static friction of rubber and dynamic friction of rubber that affect dampening performance. Long term use changes the performance of the dampener caused by all of these un-repairable factors. The hydraulic system works in a film oil with stable performance for long periods of time and it is totally repairable.
This is normal for a permanent-magnet starter. Although power is removed by releasing the key/start button, a permanent-magnet motor will actually provide power to itself as it winds down and will keep the starter drive engaged for about a half-second until it loses sufficient RPM to fully disengage.
Sticking mechanical starter drives, e.g., Bendix drives, should be cleaned with mineral spirits and only lubricated with silicone spray. Oil or common greases should not be used as they will attract and retain dust and grit causing the starter drive to stick or wear rapidly.
Solenoid-actuated starters do not require any type of cleaning or lubrication. If the starter is not going to be used for some period of time the shaft can be oiled to prevent corrosion.
122 tooth gear rings have a "v" shape, whereas 149 tooth gear rings have a "u" shape. Be aware that just because your aircraft (or engine) is supposed to have a certain ring gear doesn't necessarily mean that it does. You should always confirm and order the correct starter to match.
The Kickback Protection System or KPS® for the NL and NL/EC family of starters is through a field-replaceable shear pin. When energizing the starter, if the pinion engages the flywheel and the starter motor spins (or at least sounds like it is spinning), but the starter’s pinion gear does not rotate you should replace the shear pin.
This condition is related to the starter drive extension and retraction and affects all styles of starters. If, during normal extension, the gear does not extend completely, stress will be placed on the drive gear. If the starter drive does not disengage after start, the engine will tend to drive the gear placing stress on the gear and destroying the motor. In either case, the gear will rapidly wear or fracture.
In some cases, engine kickback will fracture starter drive gears. Kickback is related to engine set up and can be anything from incorrect timing to problems with the fuel system. If kickback is noticed as a common occurrence on the airplane, diagnose and repair the problem or the replaced starter drive may fracture again. Many of Sky-tec's current starters offer kickback protection.
OUR PARTS ARE ENGINEERED TO LAST LONGER WHILE SOLVING KNOWN SAFETY ISSUES
OVER 40,000 PARTS IN STOCK WITH SAME DAY SHIPPING IF ORDERED BY 3PM
OUR TEAM PROVIDES THE OLD-FASHIONED CUSTOMER SERVICE THAT YOU EXPECT